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28
Additivity and synergism

When discussing the way two exposures combine to influence the risk of
disease the word interaction is used to refer to departures from either mul-
tiplicative or additive models. In general these models have no biological
basis and interaction is therefore a purely statistical concept. The interac-
tion parameters are chosen solely to test hypotheses and are not useful for
describing the data when there is interaction. The word synergism is often
used, in a similar sense, to refer to departures from a biological model for
the independent action of two exposures. When the joint effect of two expo-
sures is greater than would be expected from the separate effects, according
to such a model, the exposures are said to display positive synergism. Syn-
ergism is therefore a particular kind of interaction but precisely what kind
depends on the biological model for independent action.

Epidemiologists often use the word synergism without specifying pre-
cisely what they mean by independent action. In other words they use it in
a statistical sense. When used in this way synergism is generally measured
as a departure from an additive model. This suggests an ill-defined biolog-
ical model which predicts that the rate for the joint effect of two exposures
is the sumn of the rates for the separate effects. An example of such a model
is shown in Fig. 28.1 which refers to a situation where disease is caused by
one or other of two precipitating events. Exposure A influences the chance
of the first event occurring, while exposure B influences the chance of the
second event occurring. When A and B act independently their effects on
the rate will be additive because

Rate(Event 1 or 2) = Rate(Event 1) + Rate(Event 2).

In cases like this it makes sense to fit an additive model so that departures
from this model can be measured and used to test whether the two expo-
sures act independently. In this chapter we consider some of the special
problems which arise when using additive regression models.
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Fig. 28.1. Two precipitating events for disease.

28.1 Fitting additive models

With additive models effects are measured as differences between rates
{or odds) pafameters rather than as ratios. The use of stratification to
control the additive effects of an exposure for confounding would be based
on the assumption that the difference between the rate parameters .for
the different levels of exposure is constant over the strata. Formulating
the same problem in terms of regression models the effects of an exposure
controlled for a confounder are found by fitting the additive model for the
rate,

Rate = Corner + Exposure + Confounder.

The assumption that the additive effect of the exposure is the same for ajll
strata formed by the confounder is expressed by the fact that the model is
additive, with no interaction terms. o
Additive models are fitted to data by choosing parameters to maximize
the log likelihood in the same way as for multiplicative models, but'th.e
calculations are different and require different computer programs. Simi-
larly log likelihood ratios are used to test hypotheses in the same way as
for multiplicative models. In practice additive models can be more trouble-
some to fit than multiplicative models because the most likely parametgr
values do not' necessarily predict rates which are greater than zero. It is
then rather difficult to know what to do. Should one treat this as evidence
that the additive model is a poor fit, or should one find most likely values

..subject to the constraint that they predict positive rates? Generally the

latter policy is followed, but it can be difficult to implement.*

*This problem does not arise with multiplicative models be_ca.use these are .ﬁtted as
additive models for the log rate and the log rate is not constrained to be positive.
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28.2 Discriminating between additive and multiplicative models

When there are rival biological grounds for choosing an additive model and
a multiplicative model the investigator will wish to discriminate between
the two models by seeing which fits the data best. The deviances for the
two models provide an informal way of looking at this but they cannot be
compared in a formal test because the additive and multiplicative models
are not nested. The solution to this technical problem is to find an eztended
model which contajns both additive and multiplicative models as special
cases. One such model is

(Rate)? — 1

P = Corner + A+ B,

where p is a parameter yet to be determined. In this model A and B refer
to parameters which measure differences in the value of

(Rate)? — 1
p .
As p approaches 1 the model reduces to

Rate — 1.0 = Corner + A +B

in which the A and B parameters measure differences in the rate. As p
approaches zero, the left-hand side of the model approaches the log of the
rate T, so the model reduces to

log (Rate) = Corner + A + B,

in which the A and B parameters measure differences in the log rate. The
two extremes of the extended model therefore correspond to an additive
model (p = 0) and a multiplicative model (p = 1). When this extended
model is fitted for a range of values for p, including p = 1 and p = 0, a
comparison of the log likelihoods for the different values of p will indicate
which is the most likely value for p and whether the additive or multi-
plicative model is preferred. It may turn out, of course, that both models
provide an adequate fit, or that neither model is acceptable. We do not
advocate the use of the model with values of p other than zero or one,
because effect parameters measured as differences in the value of

(Rate)? — 1
p

TThis follows because, for small 0,

RF = [exp(log(R))]” = exp[plog(R)] ~ 1 + plog(R).
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would be hard to interpret. The sole purpose of the extended model is to
provide a framework in which to choose between additive and multiplicative
models.

Using the extended model to discriminate between multiplicative and
additive models involves fitting a non-standard regression model for each
of a range of values of p. Even with software which allows non-standard
models this can be quite a lot of work.

28.3 Additive models with case-control studies

There are some special problems which arise when trying to fit additive
models to data from case-control studies. To illustrate these we shall con-
sider a case-control study of the joint effect of two exposures A and B in
which the ratio of sampling probabilities is

_ Probability of selecting a failure as a case
~ Probability of selecting a survivor as a control’

We showed in Chapter 23 that parameters which are defined as ratios of
the odds of being a case are also ratios of the corresponding odds of failure
in the study base. Unfortunately this does not apply to additive models.
Parameters which are defined as differences in the odds of being a case
are K times the corresponding differences in the odds of being a failure in
the study base. The factor K, which relates the odds of being a case to
the odds of faliure, cancels in ratios but not in differences. It follows that
fitting an additive model to case-control data tells us nothing about the
additive effects on the odds of failure in the study base except in those rare
cases where the value of K is known. It is still possible, of course, to test
hypotheses about zero parameter values since a zero additive effect on the
odds of being a case corresponds to a zero additive effect on the odds of
being a failure in the study base.

Although it is not possible to estimate the additive effects of A and B
on the odds of failure in the study base it is still possible to estimate the
ratio of these effects to the corner. This is less satisfactory than estimating
differences in the odds themselves, but better than nothing. These new
parameters are estimated by fitting the model

Odds = Corner x (1.0 + A + B).

When the model is written in this way the corner parameter is still the

~odds of being a case when A and B are at level zero, but the A and B

parameters are now differences in the ratio

Odds
Corner’
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Table 28.1. Estrogen replacement, weight, and endometrial cancer

Estrogen replacement

Weight No Yes

(kg) Cases Controls Cases Controls
< b7 12 183 20 61
57-75 45 378 37 113

> 75 42 140 9 23

This model can be fitted to data using likelihood in the same sort of way
as for conventional models but special software is required.

Exercise 28.1. Table 28.1 shows results of a case-control study relating endome-
trial cancer incidence to use of estrogen therapy and body weight. Calculate odds
ratios for each category of weight and estrogen use relative to the corner (top left
corner cell). Obtain differences in these odds ratios for estrogen replacement yes

compared to estrogen replacement no, at each level of weight. Do the data appear
consistent with an additive model?

When a case-control study is stratified by age at time of diagnosis, and
controls are sampled separately in each age stratum, there will be a different
value of K for each stratum. To make sure the A and B parameters do not
depend on these K’s the parameters must now be defined as differences in
the value of

Odds

Age specific corner’

where the age specific corners are the odds in each age stratum when A
and B are both at level 0. The A and B parameters will then equal the
corresponding differences in the ratio of the odds of failure to the age
specific corners in the study base.

Assuming that the new A and B parameters are constant over age
strata, their common value can be estimated by fitting the model

Odds = Corner x Age x (1.0 + A +B).

where age is a categorical variable with one level for each age stratum.
The | Corner x Age | part of the model corresponds to fitting separate cor-

ner parameters for each age stratum. This model again requires special
software.

28.4 Discriminating between models using case-control studies

The extended model containing the extra parameter p can also be used
to compare the fit of a multiplicative model with an additive model using
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data from a case-control study. The two models we wish to compare are
QOdds = Corner x A x B,
in which A and B parameters are ratios of odds, and
Qdds = Corner x (1.0 + A + B),

in which the A and B parameters are differences in the ratios of odds to
the corner. The multiplicative model can also be written in the form

log(Odds) = Corner + A + B,

in which the A and B parameters are defined as differences in log odds.
The extended model is now

(Odds/Corner)? — 1.0 _ A+B.
p

As p approaches 0 this model approaches
log(Odds/Corner) = A + B,

which simplifies to
log(Odds) = log(Corner) + A + B.

This is the multiplicative model written in log form, apart from the fact
that because the corner parameter is on the original scale in the extended
model it appears as log(Corner). As p approaches 1, the extended model

approaches
0Odds = Corner x (1.0 + A + B),

which is the additive model. N
The procedure for comparing the fit of a multiplicative and an additive
model is illustrated by fitting the extended model to the data in Table 28.1
for a range of values of p. To actually do this involved fitting a non-standard
model for each of these values. The resulting log likelihood ratios are shown
in Fig. 28.2. At p = 0 the log likelihood ratio is —2.774 and at p = 1 it
is —0.408. To test for the adequacy of the multiplicative model we take

.. p =0 as the null value. Minus twice the log likelihood ratio for p = 0 is

5.548 (p ~ 0.02), so the data do not support this model. To test for‘the
adequacy of the additive model we take p = 1 for the null value. Minus
twice the log likelihood ratio for p = 1 is 0.816 (p > 0.10) so the data are
consistent with the additive model.



288 ADDITIVITY AND SYNERGISM

0.0

Log likelihood ratio
-1.5

T T T T T T T

0.0 0.5 1.0 1.5 2.0 2.5 3.0

p
Fig. 28.2. The log likelihood ratio for p.

The most frequent outcome when comparing the fit of multiplicative
and additive models is that both provide an acceptable description of the
data. This has been taken by some epidemiologists as a serious flaw in
the modern modelling approach to statistical analysis, since additive and
multiplicative models have radically different public health implications
(notably in relation to the targeting of interventions). This difficulty is
indeed serious, but it is attributable more to an attempt to extrapolate
beyond the data than to any shortcomings in statistical methodology.

A good example of this arises in attempts to study the implication of
different dose-response relationships for the carcinogenic effect of ionizing
radiation. The public health problem (if there is one) is one of relatively
large populations exposed to low doses, but the available epidemiological
studies have concentrated upon high exposure groups — A-bomb survivors,
irradiated patient groups and so on. Additive and multiplicative dose-
response models make similar predictions at high doses so these studies are
poorly discriminated. However, they make very different predictions for
subjects receiving low dose exposure. If data were available for subjects
receiving low dose exposure the two models would be easily discriminated;
the problem lies in trying to discriminate between them using data from a
range of dose levels for which the two models make the same predictions.

Exercise 28.2. We plan to reduce the total burden of disease in a, community by
attempting to eliminate exposure A but another explanatory variable, B, is also
known to be important. Should the intervention be targeted on individuals whose

SOLUTIONS 289

exposure to B is greatest? Consider how the answer to this question c%epends on
whether the effects of A and B on the rate are additive or multiplicative.

Solutions to the exercises

28.1 The odds ratios are shown below.

Weight  Estrogen replacement

(kg) No Yes Difference

< 57 1.00 5.00 4.00

57-75  1.82 4.99 3.17

> 75 4.58 5.97 1.39
The additive model does not appear to fit particularly well as the differences
between the odds ratios for the two estrogen groups seems to fall with
increasing weight. Further examination of the table suggests the possibility
that there is only a relationship with weight when there is no estrogen

replacement.

28.2 Consider a population classified according to the two factors A and
B. When these act additively or multiplicatively, the rates follow one of the
following patterns:

Additive model Multiplicative model
A Potential A Potential.
B No Yes reduction No Yes reduction
No 1 3 2 1 3 2
Yes 3 5 2 3 9 6

When the multiplicative model holds the reduction in rates by eliminating
exposure A is greater in the B-Yes group than in the B-No group. It \?vould
therefore be cost effective to target intervention at the high- risk section of
the population. When the additive model holds this is no longer the case
— there is an equal potential reduction in both sections of the population,
and targeted intervention makes little sense.





